
Towards Solving Differential Equations through Neural Programming

Forough Arabshahi 1 Sameer Singh 1 Animashree Anandkumar 2

1. Introduction
Differential equations are used to model numerous phenom-
ena such as heat, electrodynamics, fluid dynamics and quan-
tum mechanics. For example, Partial Differential Equations
(PDEs) have been used for boundary control of robotic air-
crafts (Paranjape et al., 2013), control of autonomous agents
(Bandyopadhyay et al., 2017) or generating fluid animations
(Yang et al., 2016). Although some differential equations
have easy to find solutions, such differential equations do
not usually emerge in real-world problems. Therefore, solv-
ing differential equations is often a bottleneck in real-world
applications. It is important to solve them accurately, in a
timely and cost-effective manner.

Researchers have been interested in solving differential
equations with neural networks ever since the beginning
of the 90’s (Meade Jr & Fernandez, 1994). Almost all of
them focus on gathering numerical evaluations from the
differential equation and using this data for training a neural
network that interpolates/approximates the solution (Lagaris
et al., 1998; Rudd & Ferrari, 2015; Berg & Nyström, 2017b;
Trischler & D’Eleuterio, 2016; Berg & Nyström, 2017a;
Sirignano & Spiliopoulos, 2017; Han et al., 2017; Khoo
et al., 2018). Although intuitive, we argue that this approach
is not scalable and will require training and tuning a separate
neural network for each problem. We propose an alternative
method in this extended abstract in the hope of initiating a
new direction for tackling this problem.

Our main proposal is to use symbolic data to train a neural
model for solving a differential equation. Symbolic equa-
tions provide an efficient and compact representation of the
differential equation and we leverage their compositional-
ity to efficiently train a neural model capable of solving a
differential equation in a scalable and generalizable manner.

We divide solving a differential equation into two main steps:
(1) finding a set of candidate solutions to the differential
equation, (2) accepting the correct solution from the given
set of candidates using a neural model. Step (1) has been

1UC Irvine 2California Institute of Technology. Correspon-
dence to: Forough Arabshahi <farabsha@uci.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

addressed in other contexts (Zaremba et al., 2014; Vijayaku-
mar et al., 2018; Polosukhin & Skidanov, 2018) and these
methods can be adapted to address our problem. Therefore,
we focus instead on step (2) in this extended abstract.

Summary of Contributions We propose using symbolic
data for training neural networks that solve differential equa-
tions. This results in a generalizable and scalable neural
solver. The main reason is that we jointly learn a large num-
ber of functions, that cover an entire mathematical domain,
and use these trained functions for solving an unseen dif-
ferential equation. Almost all of the literature focuses on
hand-crafting architectures that are tailored for a specific
type of differential equation. Moreover, they use numerical
evaluations of a differential equation for training, which
means that training and tuning needs to be redone for solv-
ing a different input differential equation resulting in a lack
of scalability and generalizability.

In this work, we investigate the possibility of using neural
programs for solving ordinary differential equations (ODEs)
by verifying/rejecting a candidate solution of an ODE. We
design a neural programmer that is capable of choosing the
correct solution with a high accuracy. Our neural program-
mer, based on a Tree-LSTM (Tai et al., 2015), leverages the
compositionality of each input ODE.

2. Problem Description
An nth-order ordinary differential equation is of the follow-
ing general form

∑n
i=0 ai(x)

dif(x)
dxi = b(x) where ai(x) for

i = 0, 1, . . . , n and b(x) are arbitrary differentiable func-
tions. f(x) is an unknown function and dif(x)

dxi is its ith

derivative. Solving an ODE amounts to finding f(x) that
satisfies the general form equation.

Our goal is to take a step towards solving ODEs through
neural programming. Formally, Given a candidate solution
to the differential equation, we would like to verify whether
it is the right solution or not.

3. Solving Differential Equations
In this extended abstract, we represent the problem of solv-
ing differential equations as a two-step process. In step 1,
one finds a set of candidate solutions for the differential
equation; given that the correct solution lies in the set, in
step 2, the correct solution is chosen from the provided set.



Neural Programming in Ordinary and Partial Differential Equations

=

+

⇥
sin

⇥

2 x

f

di↵

x
f

di↵

x

x

4

x

(a) d2f(x)
dx2 + 4f(x) = sin(2x)

Figure 1. Example of an ODE given in Fig. 1a. The solution of
this ODE is f(x) = 1

8
sin(2x) − x

4
cos(2x). If the ODE has a

closed form solution, f(x) has a compositionality and will replace
the blue nodes in the figure.

Table 1. Statistics of the data
Statistics Sym fEval ODE

#data: train 13, 375 1, 760 7, 071
#data: validation 1, 477 641 793
#data: test 3, 723 1, 041 1, 945

Min Depth 1 2 3
Max Depth 7 4 7
Average Depth 3.14 3.07 6.82

Since step 1 has been addressed in the literature, we present
our approach for solving step 2.

We collect a large dataset of symbolic ODEs along with a set
of correct and incorrect solutions for each. We augment this
data with a symbolic dataset of equations that encode the
properties of the functions appearing in the ODEs as well as
a limited number of function evaluation data for the same
functions. The data generation process is described in detail
in Sec 4 and the model that uses this data is described below.
We will show in Sec 4, that we are able to accurately accept
or reject the correct or incorrect solution, respectively.

Proposed Compositional Model Our model leverages
the compositionality of the input equations. We propose
using tree-LSTMs that mirrors the structure of each input
equation. Tree-LSTMs, proposed by (Tai et al., 2015) have
shown good performance modeling mathematical equations
(Arabshahi et al., 2018). Therefore, we use Tree-LSTMs for
solving differential equations.

4. Experiments and Results
Dataset Our dataset contains symbolic ODEs and a set of
candidate correct and incorrect solutions for each. It also
contains the rules of differentiation for the functions in the
dataset. This data is generated through the method proposed
by Arabshahi et al. (2018). The data is further augmented
with the dataset released by the same authors, which we
refer to as the mathData. The properties of the final dataset
used here is given in Table 1

Baseline Models We compare Tree LSTMs with Sympy,
and simple Tree-structured neural networks (TreeNNs).

Table 2. Performance evaluation for solving ODEs on unseen test
data: MSE is the mean squared error for the numeric data, SymAcc
is accuracy of symbolic data not containing ODEs, ODEacc is the
accuracy of the ODE data. Finally, Acc is the weighted average of
SymAcc and ODEacc. Sym, Sym+ODE and full refer to the data
used for training in each experiment.

Approach Acc MSE SymAcc ODEacc

Majority Class 52.15 - 50.16 56.45
Sympy 53.42 - 80.07 59.78

TreeNN sym 92.35 - 92.35 -
TreeLSTM sym 96.43 - 96.43 -

TreeNN ODE 98.45 - - 98.45
TreeLSTM ODE 99.27 - - 99.27

TreeNN sym+ODE 93.99 - 91.42 98.92
TreeLSTM sym+ODE 96.73 - 95.86 98.41

TreeNN full 93.49 7.59 90.61 99.02
TreeLSTM full 95.58 0.051 94.09 98.45

Since Sympy was used for generating correct equations
and solutions to the ODE, it will always predict the correct
solution or a correct identity. Sympy’s loss in performance
is the result of not being able to reject an incorrect solu-
tion to the ODE or an incorrect equation. We use different
datasets to train TreeLSTMs and TreeNNs. Namely, sym,
ODE, sym+ODE and full, mean that the models are trained
with symbolic data, ODE data, symbolic and ODE data, and
finally symbolic, ODE and numeric data combined.
Results Our model is implemented using MxNet (Chen
et al., 2015). We tune all the models over the same grid of
parameters and report the best for each model.

An important point is that the depth of ODE equations is at
least 4 with an average of 6. SOTA has shown performance
on up to depth 4 and the fact that the model is able to ac-
curately accept/reject the solutions is a promising result for
future research in this direction. The results are presented in
Table 2. As shown, we achieve up to 99.27% accuracy for
predicting the correct answer for a given ODE. Since col-
umn Acc shows the performance on different test samples
for different models, we do not highlight any row.

5. Conclusions and Future Directions
We present a novel approach for solving differential equa-
tions and take a step towards solving them. Instead of
gathering numeric data from ODEs for training, we propose
using symbolic ODEs, resulting in generalizable and scal-
able models. Our results indicate that there is a potential for
solving differential equations using neural programs.

We follow two main goals in the future. First, we plan to
extend the domain by adding partial differential equations.
Second, we are working on an efficient search algorithm
that outputs candidate solutions for the differential equa-
tions. This will complete solving differential equations
using neural programming.



Neural Programming in Ordinary and Partial Differential Equations

Acknowledgments
The authors would like to thank Amazon Inc., for the
AWS credits. F. Arabshahi is supported by DARPA Award
D17AP00002. A. Anandkumar is supported by Microsoft
Faculty Fellowship, NSF CAREER Award CCF-1254106,
DARPA Award D17AP00002 and Air Force Award FA9550-
15-1-0221. S. Singh would like to thank Adobe Research
and FICO for supporting this research.

References
Arabshahi, Forough, Singh, Sameer, and Anandkumar, An-

imashree. Combining symbolic expressions and black-
box function evaluations for training neural programs. In
International Conference on Learning Representations
(ICLR), 2018.

Bandyopadhyay, Saptarshi, Chung, Soon-Jo, and Hadaegh,
Fred Y. Probabilistic and distributed control of a large-
scale swarm of autonomous agents. IEEE Transactions
on Robotics, 33(5):1103–1123, 2017.

Berg, Jens and Nyström, Kaj. Neural network aug-
mented inverse problems for pdes. arXiv preprint
arXiv:1712.09685, 2017a.

Berg, Jens and Nyström, Kaj. A unified deep artificial
neural network approach to partial differential equations
in complex geometries. arXiv preprint arXiv:1711.06464,
2017b.

Chen, Tianqi, Li, Mu, Li, Yutian, Lin, Min, Wang, Naiyan,
Wang, Minjie, Xiao, Tianjun, Xu, Bing, Zhang, Chiyuan,
and Zhang, Zheng. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. 2015.

Han, Jiequn, Jentzen, Arnulf, et al. Overcoming the curse
of dimensionality: Solving high-dimensional partial dif-
ferential equations using deep learning. arXiv preprint
arXiv:1707.02568, 2017.

Khoo, Yuehaw, Lu, Jianfeng, and Ying, Lexing. Solving
for high dimensional committor functions using artificial
neural networks. arXiv preprint arXiv:1802.10275, 2018.

Lagaris, Isaac E, Likas, Aristidis, and Fotiadis, Dimitrios I.
Artificial neural networks for solving ordinary and par-
tial differential equations. IEEE Transactions on Neural
Networks, 9(5):987–1000, 1998.

Meade Jr, Andrew J and Fernandez, Alvaro A. The numer-
ical solution of linear ordinary differential equations by
feedforward neural networks. Mathematical and Com-
puter Modelling, 19(12):1–25, 1994.

Paranjape, Aditya A, Guan, Jinyu, Chung, Soon-Jo, and
Krstic, Miroslav. Pde boundary control for flexible artic-
ulated wings on a robotic aircraft. IEEE Transactions on
Robotics, 29(3):625–640, 2013.

Polosukhin, Illia and Skidanov, Alexander. Neural program
search: Solving programming tasks from description and
examples. arXiv preprint arXiv:1802.04335, 2018.

Rudd, Keith and Ferrari, Silvia. A constrained integration
(cint) approach to solving partial differential equations
using artificial neural networks. Neurocomputing, 155:
277–285, 2015.

Sirignano, Justin and Spiliopoulos, Konstantinos. Dgm: A
deep learning algorithm for solving partial differential
equations. arXiv preprint arXiv:1708.07469, 2017.

Tai, Kai Sheng, Socher, Richard, and Manning, Christo-
pher D. Improved semantic representations from tree-
structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

Trischler, Adam P and D’Eleuterio, Gabriele MT. Synthe-
sis of recurrent neural networks for dynamical system
simulation. Neural Networks, 80:67–78, 2016.

Vijayakumar, Ashwin J, Mohta, Abhishek, Polozov, Olek-
sandr, Batra, Dhruv, Jain, Prateek, and Gulwani, Sumit.
Neural-guided deductive search for real-time program
synthesis from examples. International Conference on
Learning Representations (ICLR), 2018.

Yang, Cheng, Yang, Xubo, and Xiao, Xiangyun. Data-
driven projection method in fluid simulation. Computer
Animation and Virtual Worlds, 27(3-4):415–424, 2016.

Zaremba, Wojciech, Kurach, Karol, and Fergus, Rob. Learn-
ing to discover efficient mathematical identities. In Ad-
vances in Neural Information Processing Systems, pp.
1278–1286, 2014.



Neural Programming in Ordinary and Partial Differential Equations

A. Stress tests
Test 1. depth analyzing the depth generalization

Table 3. trained on equations of depth 1,2,3

test depth acc prec recall MSE sympy acc pos/total #samples

4 94.70 92.95 96.31 3.57E-06 71.93 45.58 2867
5 89.06 90.63 92.80 1.43E-09 77.77 60.73 4314
6 83.12 86.64 94.86 8.64E-38 76.50 68.19 1374


