Towards Solving Differential Equations through Neural Programming Forough Arabshahi* Sameer Singh* Animashree Anandkumar[†]

*University of California, Irvine [†] California Institute of Technology

Differential Equations	Choosing the correct candidate solution
 Used to model numerous phenomena heat electrodynamics fluid dynamics quantum mechanics 	 Tree LSTM whose structure mirrors the input equation LSTM cells associated with each Function 1-layer feed-forward net for embedding symbolic terminals 2-layer feed-forward net for encoding floating point numbers 2-layer feed-forward net for decoding floating point numbers
* • An n^{th} -order ordinary differential equation (ODE) $a_0(x)f(x) + a_1(x)\frac{df(x)}{dx} + \dots + a_n(x)\frac{d^n f(x)}{dx^n} = b(x)$	 Data used in training: symbolic identities that express the relationships between functions (sym) symbolic ODEs and a set of candidate solutions for each (ODE) single function numeric evaluations (num)
 * d is the differentiation operator • Solving the differential equation: find f(x) that satisfies it • Not always easy to find solutions to differential equations • Can neural networks be used to solve differential equations? 	• Baselines: * Majority class * Sympy * Tree-structured RNNs
 Can neural networks be used to solve differential equations: * Researchers have been addressing this since the 90's * Gather numerical evaluations of a given differential equation 	Dataset Generation Scheme: Generating Symbolic Equations
 Suffer functions of a given differential equation Use the evaluations to interpolate/approximate the solution with a neural network Drawbacks * Hand tailored architecture for each differential equation 	• Generate possible equations valid in the grammar • Start from a small initial set of axioms e.g. $\sin^2(\theta) + \cos^2(\theta) = 1$ • For each axiom, choose a random tree node

- * Hand tailored architecture for each differential equation
- * Train and tune a neural network for each differential equation
- * Lack of scalability and generalizability

* Make local random changes to the node.

• Goal: Find a generalizable and scalable solution

• How?

- * Use symbolic differential equations instead of numerical evaluations
- * Leverage the compositionality of the differential equation
- Proposed method:
 - * Step 1: Find a set of candidate solutions to the differential equation \star has been studied in the literature
 - * Step 2: Choose the correct solution among the candidates
 - \star The focus of this work

Modeling Differential Equations

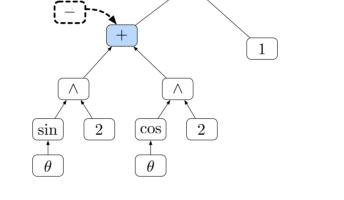
• Grammar rules:

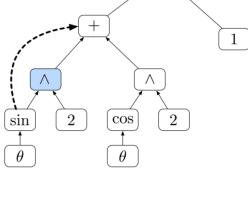
$$\begin{split} I &\to = (E, E), \ \neq (E, E) \\ E &\to T, F_1(E), F_2(E, E) \\ F_1 &\to \sin, \cos, \tan, \dots \\ F_2 &\to +, \wedge, \times, \text{diff}, \dots \\ T &\to -1, 0, 1, 2, \pi, x, y, \dots, \text{floating point numbers} \end{split}$$

• Covered domain:

Table: Symbols in our grammar, i.e. the functions, variables, and constants

Unary functions, F_1			Terminal, T		Binary, F_2		
\sin	COS	CSC	sec	tan	0	1	+
\cot	arcsin	arccos	arccsc	arcsec	2	3	×
arctan	arccot	\sinh	\cosh	csch	4	10	\wedge
sech	tanh	coth	arsinh	arcosh	0.5	-1	diff
arcsch	arsech	artanh	arcoth	exp	0.4	0.7	
					π	x	





Replace Node

Shrink Node

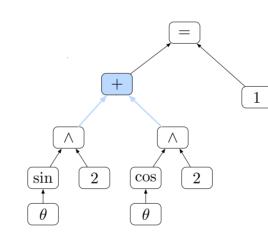
 $\left[\cos\right]$

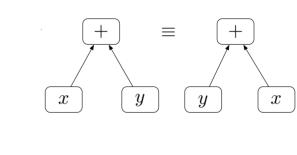
 \sin

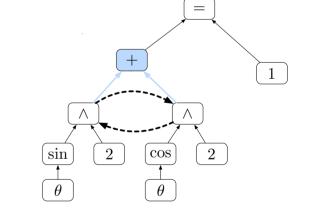
= |.

2

- * Problem: More incorrect equations than correct
- Generate additional correct equations
 - * Solution: Sub-tree matching with a *mathDictionary*







Choose a Node

mathDictionary

match value

Generating ODEs

- Randomly generate ODE coefficients
- Solve using Sympy
- If any solution:
 - * Add to candidate solutions
 - \ast Locally change the correct solution to generate incorrect candidates

Experiments and Results

Table: Statistics of the data

Statistics	Sym	fEval	ODE
#data: train	13,375	1,760	7,071
#data: validation	1,477	641	793
#data: test	3,723	1,041	1,945
Min Depth	1	2	3
Max Depth	7	4	7
Average Depth	3.14	3.07	6.82

• Example of a differential equation and its solution

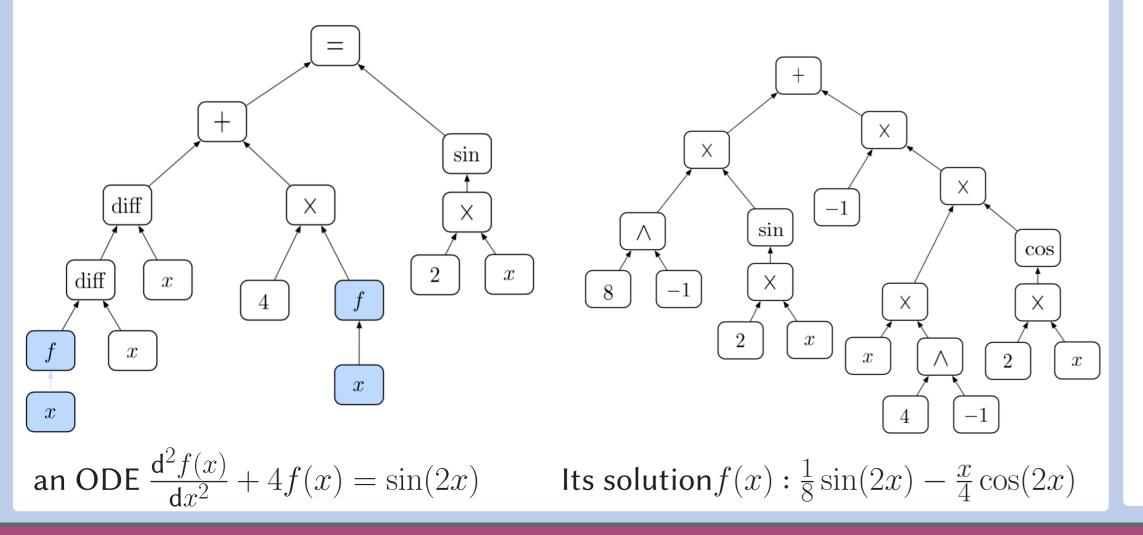


Table: Performance evaluation for solving ODEs on unseen test data: MSE is the mean squared error for the numeric data, *SymAcc* is accuracy of symbolic data not containing ODEs, *ODEacc* is the accuracy of the ODE data. Finally, *Acc* is the weighted average of SymAcc and ODEacc. Sym, Sym+ODE and full refer to the data used for training (symbolic, symbolic+ODE and all the data, respectively) in each experiment.

Approach	Acc	MSE	SymAcc	ODEacc
Majority Class	52.15	_	50.16	56.45
Sympy	53.42	-	80.07	59.78
TreeNN sym	92.35	-	92.35	_
TreeLSTM sym	96.43	-	96.43	-
TreeNN ODE	98.45	-	-	98.45
TreeLSTM ODE	99.27	-	_	99.27
TreeNN sym+ODE	93.99	-	91.42	98.92
TreeLSTM sym+ODE	96.73	-	95.86	98.41
TreeNN full	93.49	7.59	90.61	99.02
TreeLSTM full	95.58	0.051	94.09	98.45

TensorLab, CMS department, California Institute of Technology, Pasadena, CA, USA

Email: farabsha@uci.edu

https://github.com/ForoughA/neuralMath