
Towards Solving Di�erential Equations through Neural Programming
Forough Arabshahi? Sameer Singh? Animashree Anandkumar†

?University of California, Irvine † California Institute of Technology

Di�erential Equations
Used to model numerous phenomena
∗ heat
∗ electrodynamics
∗ fluid dynamics
∗ quantum mechanics
∗ . . .
An nth-order ordinary di�erential equation (ODE )

a0(x)f (x) + a1(x)
df (x)
dx

+ · · · + an(x)
dnf (x)
dxn

= b(x)

∗ d is the di�erentiation operator
Solving the di�erential equation: find f (x) that satisfies it

Not always easy to find solutions to di�erential equations

Can neural networks be used to solve di�erential equations?
∗ Researchers have been addressing this since the 90’s
? Gather numerical evaluations of a given di�erential equation

? Use the evaluations to interpolate/approximate the solution with a neural network

Drawbacks
∗ Hand tailored architecture for each di�erential equation
∗ Train and tune a neural network for each di�erential equation
∗ Lack of scalability and generalizability

Goal: Find a generalizable and scalable solution

How?

∗ Use symbolic di�erential equations instead of numerical evaluations
∗ Leverage the compositionality of the di�erential equation
Proposed method:
∗ Step 1: Find a set of candidate solutions to the di�erential equation
? has been studied in the literature

∗ Step 2: Choose the correct solution among the candidates
? The focus of this work

Modeling Di�erential Equations
Grammar rules:

I → =(E,E), 6=(E,E)
E → T, F1(E), F2(E,E)

F1→ sin, cos, tan, . . .

F2→ +,∧,×, di�, . . .
T → −1, 0, 1, 2, π, x, y, . . . , floating point numbers

Covered domain:

Table: Symbols in our grammar, i.e. the functions, variables, and constants

Unary functions, F1
sin cos csc sec tan
cot arcsin arccos arccsc arcsec

arctan arccot sinh cosh csch
sech tanh coth arsinh arcosh
arcsch arsech artanh arcoth exp

Terminal, T
0 1
2 3
4 10
0.5 −1
0.4 0.7
π x

Binary, F2
+
×
∧
di�

Example of a di�erential equation and its solution

an ODE d2f (x)
dx2

+ 4f (x) = sin(2x) Its solutionf (x) : 18 sin(2x)− x
4 cos(2x)

Choosing the correct candidate solution
Tree LSTM whose structure mirrors the input equation
∗ LSTM cells associated with each Function
∗ 1-layer feed-forward net for embedding symbolic terminals
∗ 2-layer feed-forward net for encoding floating point numbers
∗ 2-layer feed-forward net for decoding floating point numbers

Data used in training:
∗ symbolic identities that express the relationships between functions (sym)
∗ symbolic ODEs and a set of candidate solutions for each (ODE)
∗ single function numeric evaluations (num)

Baselines:
∗Majority class
∗ Sympy
∗ Tree-structured RNNs

Dataset Generation Scheme:
Generating Symbolic Equations
Generate possible equations valid in the grammar
∗ Start from a small initial set of axioms e.g. sin2(θ) + cos2(θ) = 1
∗ For each axiom, choose a random tree node
∗Make local random changes to the node.

sin cos

=

∧

1

1

2

1

∧

2

+

θθ

22

1

−

sin cos

=

∧

1

1

2

1

∧

2

+

θθ

22

1

∧

sin cos

=

∧
1

1

2

1

∧

2

+

θθ

22

1

∧

∧

10

Replace Node Shrink Node Expand Node

∗ Problem: More incorrect equations than correct
Generate additional correct equations
∗ Solution: Sub-tree matching with a mathDictionary

sin cos

=

∧

1

1

2

1

∧

2

+

θθ

22

1

2

+

x 2y 2y

+≡

x

sin cos

=

∧

1

1

2

1

∧

2

+

θθ

22

1

Choose a Node mathDictionary match value

Generating ODEs

Randomly generate ODE coe�icients
Solve using Sympy
If any solution:
∗ Add to candidate solutions
∗ Locally change the correct solution to
generate incorrect candidates

Table: Statistics of the data

Statistics Sym fEval ODE
#data: train 13, 375 1, 760 7, 071
#data: validation 1, 477 641 793
#data: test 3, 723 1, 041 1, 945

Min Depth 1 2 3
Max Depth 7 4 7
Average Depth 3.14 3.07 6.82

Experiments and Results
Table: Performance evaluation for solving ODEs on unseen test data: MSE is the mean squared
error for the numeric data, SymAcc is accuracy of symbolic data not containing ODEs, ODEacc
is the accuracy of the ODE data. Finally, Acc is the weighted average of SymAcc and ODEacc.
Sym, Sym+ODE and full refer to the data used for training (symbolic, symbolic+ODE and all the
data, respectively) in each experiment.

Approach Acc MSE SymAcc ODEacc
Majority Class 52.15 - 50.16 56.45
Sympy 53.42 - 80.07 59.78

TreeNN sym 92.35 - 92.35 -
TreeLSTM sym 96.43 - 96.43 -
TreeNN ODE 98.45 - - 98.45
TreeLSTM ODE 99.27 - - 99.27

TreeNN sym+ODE 93.99 - 91.42 98.92
TreeLSTM sym+ODE 96.73 - 95.86 98.41

TreeNN full 93.49 7.59 90.61 99.02
TreeLSTM full 95.58 0.051 94.09 98.45

TensorLab, CMS department, California Institute of Technology, Pasadena, CA, USA Email: farabsha@uci.edu https://github.com/ForoughA/neuralMath


