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Abstract

Although machine learning has been highly
successful in recent years, this success has
been based on algorithms that exhibit only
one of the multiple learning paradigms used
by humans: learning statistically from many
examples. Here we consider a second learn-
ing paradigm widely exhibited by humans, but
rarely by computers: learning from instruc-
tion involving natural language conversations
and demonstrations. We argue that this second
paradigm – conversational machine learning –
is ripe for rapid research progress, and that it
holds the potential to make it possible for ev-
ery user of a computer or mobile device to be-
come a programmer. We define the problem of
conversational learning, survey relevant litera-
ture, and provide as a case study the Learning
from Instruction Agent (LIA) project. Finally
we lay out a set of future research directions
involving grounded conversational instruction
that appear to be key to progress in this area.

1 Introduction

Language affects our perception of our world, and
language and thought are interconnected in funda-
mental ways (Chomsky, 2017; Boroditsky, 2011;
Vygotsky, 1964). We humans teach one another
about new concepts through natural language con-
versations, which helps us learn from past experi-
ences of others.

The advent of conversational agents in the past
few years has made it possible for humans to inter-
act in a new way with their computers: through nat-
ural language conversations. Despite the progress
made so far (Wen et al., 2017; Young et al., 2013;
Bordes et al., 2017; Eric and Manning, 2017;
Ghazvininejad et al., 2018; Liu et al., 2018a), we
are still in the early stages of understanding how
to take advantage of this new conversational capa-
bility, and current uses of conversational systems

remain limited to invoking simple pre-programmed
capabilities such as booking travel reservations,
checking the weather and setting alarms.

Conversations between humans are far more rich
than current conversations between humans and
machines. Human to human conversation is used
to debate issues, to plan joint activities, to teach
one another, and more. In this paper, we consider
the use of conversational systems to enable humans
to instruct their computers interactively, effectively
to program their computers by natural language
instruction, much as they would instruct another
human. For example, a user might wish to instruct
their phone that “Whenever it snows at night, set
my alarm 30 minutes earlier.” If the phone does not
currently understand how to implement this instruc-
tion, the user might then break it into step-by-step
instructions, “To find out whether it is snowing,
open the weather app and look here at current con-
ditions.” “To set my alarm 30 minutes earlier, open
the alarm app and subtract 30 minutes from the
wake-up time.” Note here the form of instruction
may involve interleaved or simultaneous conversa-
tion and demonstration.

This kind of conversational instruction, if it can
be made successful, would have a dramatic impact
on the relationship that humans have with their
computers. Today, less than 1% of humans have
the ability to program new capabilities into their
phones or computers – instead, users view their
phones as having a fixed set of capabilities that
have been pre-programmed at the factory. If it was
possible for each user to extend the functionality
of their phone or computer through natural lan-
guage conversation, then we would suddenly find
ourselves in a world where 99% of users have the
ability to program and customize their computers to
their specific needs. As computer-human teaming
becomes increasingly prevalent in the workplace,
this ability of workers to modify the function of



their computer teammates might have an impor-
tant impact on how AI influences future jobs – in
particular whether AI replaces or augments human
workers.

A second perspective on conversational learning
is that it can become an important new paradigm
to complement the current big-data statistical
paradigm that currently dominates the field of ma-
chine learning. Statistical learning, while impor-
tant, is just one of the learning paradigms used by
humans. If conversational instruction can be made
successful, then it is likely to become a fundamen-
tal tool for machine learning, and we are likely
to see a growing volume of research that blends
machine learning from big data statistical analysis
with interactive conversations with human experts.

This research is related to what others have
called “end-user programming” – EUP (Ko et al.,
2011)), and there are already a number of initial
systems that exhibit some of the desired properties
(e.g., (Goldwasser and Roth, 2014; Azaria et al.,
2016; Wang et al., 2016; Srivastava et al., 2017b;
Laird et al., 2017; Labutov et al., 2018).).

The goal of the current paper is to explore to-
day’s state of the art in research relevant to con-
versational learning. We first review a variety of
relevant research, then consider in more detail a
specific case study (the Learning by Instruction
Agent, LIA), discussing lessons learned and future
research directions.

2 Literature Review

The idea of learning from an expert teacher has
been studied in many different contexts, from rein-
forcement learning (Luketina et al., 2019), to imita-
tion learning (Liu et al., 2018a; Wang et al., 2019),
to learning from a teacher agent who provides a
minimal set of labeled examples that uniquely spec-
ifies the target concept (Dasgupta et al., 2019). In
much of this work, communication between the ma-
chine and teacher is in some formal language, or
the machine passively observes the expert teacher.
Although we will briefly describe these efforts, our
focus in this paper is on a more under-studied sce-
nario: teaching through natural language instruc-
tion, demonstration, and interactive conversation.
In this case, the machine deliberately attempts to
learn a new task and a teacher explicitly teaches
it to the machine. This explicit teaching scenario
can be categorized as an instance of L2 learning as
defined in (Laird and Mohan, 2018), who point out

the distinction in human learning between learning
mechanisms that are innate and subconscious such
as synaptic plasticity (L1 learning), versus learning
mechanisms that are deliberately invoked and may
involve explicit planning and reasoning.

2.1 Instructing Novel Tasks
In this sub-section, we review the current state
of the art in conversational learning, where the
machine learns a novel task through conversation.
This is also referred to as interactive task learn-
ing (Laird et al., 2017). Permitting the end user to
specify new tasks in terms of the machine’s current
capabilities is what separates the systems below
from utilities like IFTTT (https://ifttt.com/)
and Zapier (https://zapier.com/).

Intelligent agents and robots One of the intelli-
gent agents that uses natural language instructions
is the Learning by Instruction Agent (LIA) (Azaria
et al., 2016; Srivastava et al., 2017a,b; Labutov
et al., 2018; Lu et al., 2019). LIA is an intelligent
assistant that runs on a user’s smart-phone and can
interact with certain phone applications. End-users
can teach LIA to do new tasks in the domain of
the supported phone applications through natural
language instructions.

Another interactive agent that can be instructed
in natural language is Rosie (Mohan et al., 2012).
Rosie was developed in the SOAR architecture
(Laird et al., 1987) and uses natural language in-
structions to learn how to perform novel goal-
oriented tasks in the context of manipulating real
world objects using a robot arm (Mohan and Laird,
2014; Mininger and Laird, 2018). Similar to LIA,
Rosie’s learning is incremental. Rosie relies on a
broad range of information including perceptual,
semantic, and procedural knowledge for learning.
Moreover, the situated interaction mechanism in
Rosie is an effective way of learning grounded rep-
resentation of words in the environment.

Both Rosie and LIA control their learning by re-
questing instruction about unknown concepts. This
mixed initiative interaction results in efficient learn-
ing since the instructor can rely on the agent to ini-
tiate an interaction if needed. Additionally, Rosie
and LIA dynamically extend their language capabil-
ities and their understanding of their environment
through interaction.

Teaching Games with Natural Language Be-
cause games are well-structured, they provide a
medium for clearly defining the problem space and
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task and for explicitly grounding concepts. This
makes them good candidates for conversational
learning methods. Goldwasser and Roth (2014)
proposed learning from natural language instruc-
tions and framed it as a problem of mapping natural
language statements to a semantic interpreter that
extracts the meaning of the stated action. As is the
case with conversational learning, here the learner
does not have access to examples labeled with the
correct semantic interpretation and only relies on
the feedback acquired through interaction based
on the predicted interpretation. Their proposed al-
gorithmic learning approach iteratively performs
the following steps: generate rules from natural
language instructions, receive feedback by acting
in the world, and update the semantic interpreter
accordingly. They test the proposed learning by
instruction framework by playing the Freecell soli-
taire card game.

Wang et al. (2016) proposed a language learning
setting in which the computer learns to map utter-
ances to semantic interpretations through playing
a block game called SHRDLURN with a human
player. The underlying learning paradigm is in
essence similar to (Goldwasser and Roth, 2014),
but (Wang et al., 2016) showed that in order to
improve the efficiency of language learning, the
computer should be able to explicitly reason about
the human and introduced a pragmatics model to
do this reasoning.

Another agent that uses restricted natural lan-
guage interactions for learning new games is
RosieTAG (Kirk and Laird, 2014). This agent first
learns the formulation of the game (i.e. the ob-
jects, players, game rules etc.) through interactive
instructions and then uses its own general strate-
gies to solve the game. In follow-up work, this
agent was further extended to interactively learn in
a one-shot setting where the agent relies on learn-
ing hierarchical symbolic representations of task
knowledge (Kirk and Laird, 2019).

Instructive Demonstrations Demonstration is
another common modality of task instructions.
The use of the programming by demonstration
technique (McDaniel and Myers, 1998; Myers,
1987; Cypher and Halbert, 1993; Lieberman, 2001)
for users to teach intelligent agents has been ex-
plored in prior literature (e.g., (Leshed et al., 2008;
Intharah et al., 2019; Li and Riva, 2018; Chao et al.,
2011; Liu et al., 2018b)). Naturally, humans teach
each other using a combination of conversational

instructions and demonstrations (Li et al., 2018a),
which we refer to as teaching by showing and
telling. Combining these two modalities can
support more natural end user programming
experiences (Myers et al., 2017). This multi-modal
approach dates back to early systems like Put-
that-there (Bolt, 1980), where direct manipulation
inputs were used to clarify spatial references used
in natural language instructions. Later work such
as PLOW (Allen et al., 2007), Rosie (Mohan et al.,
2012), and APPINITE (Li et al., 2018a) further ex-
plored this multi-modal approach, introducing new
interactive techniques for grounding, disambiguat-
ing, and clarifying natural language instructions us-
ing demonstrations. However, there are still many
remaining challenges preventing wide adoption of
this approach, such as generalizing learned tasks,
handling new task domains, supporting greater
user expressiveness, and enabling more natural
user interactions. We believe that an interesting re-
search direction can be to develop new models that
use both language instructions and demonstrations
for teaching novel tasks to computers.

Programming with Natural Language Shift-
ing the nature of the language used to represent
computer programs from one optimized for ma-
chines to something that looks and behaves more
like natural language has been a goal since at least
the development of COBOL in 1957, and argu-
ments about natural language programming were
already heated in 1966 (Halpern, 1966). More
recently there have been efforts to create coding
platforms with “natural language-like” syntax for
writing interactive fiction (Reed, 2010) aimed at
authors who are not programmers. Price et al.
(2000) proposed a natural language-based user in-
terface for creating, modifying and examining Java
programs, and Le et al. (2013) proposed a pro-
gramming system for synthesizing smartphone au-
tomation scripts from natural language descriptions.
These works mostly attempt to directly map natu-
ral language utterances to programs, and otherwise
behave like traditional programming languages in
their treatment of syntax and logic errors. Good
and Howland (2017) found that for novices, a pro-
gramming language that appears similar to natural
language, but nevertheless has all the rigid require-
ments of traditional programming, can cause more
harm than good.

To address this shortcoming, researchers have
been developing interactive natural language pro-



gramming paradigms. Wang et al. (2017) tried
to create a natural language interface for users
to manipulate blocks in a simulated game. Their
goal was to “naturalize” a programming language
through conversational interactions such that the
resulting programming language is more natu-
ral language-like than programming language-like.
Fast et al. (2018) proposed a conversational agent
that can perform open-ended data science tasks
through natural language conversation with users.
These works and other learning by instruction and
demonstration works such as (Goldwasser and
Roth, 2014; Wang et al., 2016; Azaria et al., 2016;
Li et al., 2018a, 2019) lay the foundation for mak-
ing natural language interfaces for complex tasks
such as analyzing data, manipulating texts, and
querying databases and knowledge bases, or sim-
ple tasks covering everyday needs such as setting
alarms conditionally and sorting email.

2.2 Natural Language Interactions

Natural language interactions have been used in
various applications such as chatbots, goal oriented
conversational agents, navigation, reinforcement
learning, imitation learning and others. These appli-
cations tend not use natural language to teach how
to accomplish novel tasks, but rather to provide a
more natural interface for users to communicate
with the computer system.

Instruction in Reinforcement Learning Natu-
ral language instructions have appeared in the Re-
inforcement Learning (RL) community to improve
the generalization performance and the sample ef-
ficiency of RL. Luketina et al. (2019) provides a
comprehensive list of recent work. We review here
some of the models that use natural language in-
structions to teach new tasks to agents in a RL con-
text. Co-Reyes et al. (2019) proposed an interactive
setting where a series of natural language correc-
tions guides the agent to acquire a desired new task.
They show that natural language corrections are
substantially more informative than simpler forms
of supervision, such as preferences, while being
substantially easier and more natural to provide
than reward functions or demonstrations. Branavan
et al. (2009, 2010) proposed a RL-based framework
that converts a sequence of actions given in natural
language (e.g. instructions for how to delete a file)
to actions. In this work, each instruction maps to a
sequence of commands which are not necessarily
stated in the original instruction, and the challenge

is to infer this hidden information. They achieve
this by developing statistical models that rank the
generated candidate actions. Misra et al. (2017)
proposed a RL-based method that jointly maps vi-
sual and natural language instructions to actions.
This model separately induces text and environ-
ment representations and combines them to out-
put a policy. While this representation is good for
capturing coarse correspondence between different
modalities, it does not encode lower-level map-
pings between specific positions on a map. There-
fore, Janner et al. (2018) proposes to combine the
language and environment representations in a spa-
tially localized manner to improve performance.

RL approaches are often highly sample ineffi-
cient. Reward shaping is an approach for reducing
an RL agent’s interaction time with the environ-
ment by carefully designing reward functions. Al-
though effective, designing appropriate shaping re-
wards is difficult as well as time-consuming. Goyal
et al. (2019) proposed using instructions for re-
ward shaping in RL to overcome this challenge and
showed that language-based rewards lead to suc-
cessful completion of the task 60% more often on
average, compared to learning without language.

Navigation Natural language instructions have
also been used for navigation in an instruction fol-
lowing manner (MacMahon et al., 2006; Fried et al.,
2018a; de Vries et al., 2018; Chevalier-Boisvert
et al., 2018). These instructions typically present
strategies for solving a certain task (e.g. direc-
tions for finding an object) and are not directly
categorized as conversational learning from our
perspective. Some of these works purely use natu-
ral language instructions (MacMahon et al., 2006;
Tellex et al., 2011; Fried et al., 2018a) while others
use a blend of natural language instructions and
vision for navigation (Fried et al., 2018b; Chen and
Mooney, 2011; Kim and Mooney, 2013; Anderson
et al., 2018; Wang et al., 2019). For example, Chen
et al. (2019) introduced a task and dataset for navi-
gation and spatial reasoning called touchdown, in
which the goal is to use natural language instruc-
tions to navigate to a certain location in a real-life
urban environment and find a hidden object.

Instruction in other contexts Natural language
instructions have also been used in decision mak-
ing (Hu et al., 2019), semantic parsing (Artzi and
Zettlemoyer, 2013), playing games (Reckman et al.,
2010), building knowledge graphs (Hixon et al.,



2015) and human-robot interactions (Bisk et al.,
2016). In most of these works, instructions provide
a description for solving tasks rather than teaching
the problem specification.

3 Learning from Instruction and
Programming By Demonstration
Agents

The Learning from Instruction Agent (LIA) pro-
vides one case study of conversational learning.
LIA is a prototype intelligent digital assistant that
runs on a user’s Android smart-phone, and can be
instructed in natural language. For example, the
user can teach LIA “whenever a meeting is added
to my calendar on a Saturday, tell my spouse.” If
LIA does not understand how to perform this task
she will ask the user to teach it by breaking the
task down into a sequence of steps that LIA under-
stands. For the case of this example, the user can
say, “(first) if the Weekday field of a new meeting is
Saturday, then first create a new text message, (sec-
ond) in the Recipient field of the new text message,
put my spouse’s phone number. (third) in the body
of the text message say I just agreed to a Satur-
day meeting, (fourth) send the message” After this
teaching session, LIA can perform this task, and
will attempt to generalize the procedure to cover
similar future commands.

A typical conversation held with the current LIA
system is shown in Figure 1. As described in the
figure caption, the user here teaches LIA a new
procedure, resulting in LIA updating its semantic
parser so that future parses of this (and similar)
sentences will construct a logical form which, when
executed, performs the intended procedure.

LIA begins with a library of sensors and effec-
tors that permit interaction with the world around it.
For example, the phone’s GPS is a sensor; creating
and activating a timer on the phone is an effector;
the user’s email account can take on both roles de-
pending on whether you’re reading mail (sensor)
or sending it (effector). LIA also has an internal
long term memory whose read and write operations
are treated as an additional sensor and effector, re-
spectively. LIA starts from a limited grammar that
allows it to semantically parse simple commands to
access each sensor and effector (e.g., ”set a timer,”
”check for new email”). Over time it extends this
semantic grammar as it interacts with the user and
adds new functionalities. In addition, LIA’s parser
is continually trained from user feedback, allowing

it to adapt to the user’s phrasing habits over time.
Therefore LIA’s learning task is 3-fold:

1. Learn new symbolic knowledge by adding
new entities and facts to its internal memory,
or knowledge graph.

2. Learn new procedural knowledge by associ-
ating a new natural language phrase with a
sequence of previously known steps.

3. Learn a refined strategy for semantic parsing,
through online training from candidate parses
ultimately accepted by the user.

LIA uses a grammar-based semantic parser built
on SEMPRE (Berant et al., 2013), where each
grammar rule performs both a syntactic operation,
and a semantic operation of composing the logical
forms of its constituents into a single new logical
form. LIA’s world knowledge can be built by the
user through natural language instruction. For ex-
ample, users can create new concepts, such as the
concept of a “colleague” by an instruction such as
”A colleague is a kind of person.” Users can add
fields to a concept, for example, “Most colleagues
have a work phone number.” They can also create
instances of that concept, e.g. “Sally is a colleague
and her phone number is 555-1234.” This allows
the user to describe the world in an object-oriented
programming style through natural language. In
the back-end, this information is stored in LIA in
a knowledge graph built on top of Theo (Mitchell
et al., 1991) which represents frame-style knowl-
edge in terms of (entity, relation, value) triples, in
which any triple can also be treated as an entity.
Theo’s uniform data structure naturally supports
a generalization hierarchy of arbitrary depth, and
allows representing beliefs about beliefs. For ex-
ample, if we wanted, LIA could represent that we
learned about Sally’s phone number in a particular
conversation, that the conversation took place on a
particular date, and that her phone number changed
on a particular date.

3.1 Incorporating Demonstrations: Show
and Tell Instruction

In human to human instruction, natural language
conversation is sometimes combined with demon-
stration. There have been attempts to create in-
structable phone agents that similarly combine lan-
guage with demonstrations to provide a ”show and
tell” style interface (Li et al., 2017, 2018a, 2019).



Figure 1: A sample instructional conversation with LIA. User (left) gives a command which LIA (right) fails
to understand, so LIA invites the user to teach it. Once the user instructs LIA how to perform the command, LIA
updates its semantic grammar and parse strategy so that parsing the original ”tell my project team we will meet at
4pm” produces a logical form which, when evaluated, performs that full command. As shown in the final step of
the conversation, when the user makes a subsequent request to ”tell my assistant I will be busy at 4,” LIA performs
the command without guidance because it has successfully generalized from the previously given instructions.

For example, to teach one’s phone to ”Set my alarm
30 minutes earlier whenever it snows at night,” it
would be easier to demonstrate how to check cur-
rent conditions on the weather app, than to use
language to describe how. Demonstrations play
three main roles in such a combined ”show and
tell” system: (1) disambiguating unclear instruc-
tions; (2) grounding user instructions involving
arbitrary phone apps; and (3) providing contexts
for inferring parameterizations in the instructions.

GUI demonstrations help users focus on the
key differentiating factors between possible actions
resulting from ambiguous instructions (Li et al.,
2018a). For example, suppose a user instruction
in a restaurant-reservation task is, “select a steak-
house in downtown.” It is unclear what to do when
there are multiple steakhouses in downtown. The
study in (Li et al., 2018a) found that by having
users demonstrate the action on the GUI of a rele-
vant app and then verbally explain the criteria for
choosing among the confusing items while view-
ing these items highlighted on the GUI, one can
effectively direct users to focus on the differenti-
ating factors between these items. Additionally,
this activity guides users to use the vocabulary and
structures visible on the app GUI, making natural
language understanding much easier.

Users can ground unknown procedures and con-

cepts using demonstrations on existing app GUIs.
Because a demonstration system can track user
activity through the accessibility interface, the ef-
fective domain can encompass the entire Android
platform. By contrast, the natural-language-only
instruction systems such as (Azaria et al., 2016)
implement their lowest-level tasks on a by-topic
basis (email, weather, etc). If a user mentions an
out-of-domain task procedure (e.g., register for a
course), the instructable agent will not be able to
handle it even if the user can verbally break down
the procedure (e.g., “first, search for all available
courses. . . ”) due to the lack of support for the task
domain (Li et al., 2018b). The programming by
demonstration technique allows users to teach such
procedures by demonstrating using existing mobile
apps (Li et al., 2017). Similarly, users can employ
demonstration to ground unknown concepts used in
their natural language instructions (Li et al., 2019).
For example, if a user verbally explains the concept
“a good course” as “a course with a high course rat-
ing” when the system does not understand what the
“course rating” is, the user can demonstrate finding
out the course rating in an app GUI.

When both the user’s natural language instruc-
tion and the corresponding demonstration are avail-
able, one can leverage the demonstration and the
hierarchical structures in the underlying app GUIs



to infer both the parameters of the generalized in-
struction and their legal values (Li et al., 2017; Li
and Riva, 2018). For example, when a user demon-
strates how to do the task “order a cup of iced cap-
puccino”, the system can associate “iced cappuc-
cino” in the user utterance with the demonstrated
action of choosing the item “iced cappuccino” in
a menu on the Starbucks GUI screen, infer it as a
task parameter, and extract all the other beverage
options in the GUI menu as alternative values for
this parameter.

4 Lessons Learned and Future Directions

Here we summarize lessons from recent relevant
research and suggest future directions.

4.1 User Tests

A user study on an early version of LIA, run with
Mechanical Turkers, showed that people were able
to instruct LIA on a number of email-related tasks,
then re-use the functions they taught to reduce
their effort by 39% (Azaria et al., 2016). The Me-
chanical Turk study of Wang et al. (2017), where
they attempt to “naturalize” a programming lan-
guage through interaction as explained in Section
2, showed that around 85% of the people tended to
use the naturalized language vs. the core program-
ming language. Moreover, their study showed that
different people have different preferences for the
way they define new functionalities.

LIA’s user study also showed that only half of the
people were able to finish all the given tasks. Also,
in (Wang et al., 2016) 20% of the users did not
play the game using natural language and instead
tried to solve the puzzles by scrolling. There is still
much room for improving these systems.

4.2 Need for Common Sense

One of the most important lessons from LIA is
that users often give instructions that may be con-
sidered reasonable if given to a human, but which
nevertheless underspecify their intent. For exam-
ple, a user teaching LIA might give the instruction
“whenever it snows at night, wake me up 30 min-
utes earlier”. If the user’s intention was to account
for traffic slowdowns caused by snow in their com-
mute to work, then what they probably meant was
“whenever it snows enough to cause traffic slow-
downs and it’s a work day, wake me up 30 minutes
earlier”. In order to create instructable agents that
match the teaching style of most users, our mod-

els should attempt to uncover these under-specified
preconditions. In this sense, learning from human
instruction may require substantial common sense
reasoning, and the ability to have clarification di-
alogs with the user.

Note in the above example, if the user had stated
“whenever it snows at night, wake me up 30 min-
utes earlier because I want to get to work on time.”,
then the computer would have more information
to reason about how and whether the requested
action would achieve the intended goal. This has
been referred to as a purpose clause as early as the
90s (Di Eugenio, 1992) and a benchmark dataset
and commonsense reasoning framework was re-
cently proposed for it in Arabshahi et al. (2020).
The purpose clause has also been considered in
goal-oriented dialog agents for improving task in-
terpretation (Mohan and Laird, 2014; Mininger and
Laird, 2018).

4.3 Generalizing from Specific Scenarios
Another challenge involves generalizing instruc-
tion beyond the specific example used for teaching.
For example, if the user teaches “when it snows at
night wake me up 30 minutes earlier”, the agent
should be able to then handle “when the weather
forecasts rain, set my alarm for 1 hour later” with-
out needing to be taught how to do this. Lu et al.
(2019) attempted to tackle this problem by devel-
oping a semantic parser capable of one-shot se-
mantic parsing, though performance was far from
ideal. Advancement in few-shot semantic pars-
ing remains to be further explored (Ferreira et al.,
2015; Bapna et al., 2017; Herzig and Berant, 2018;
Dadashkarimi et al., 2018).

We humans rely on mixed initiative clarification
dialogs to handle vague or misunderstood state-
ments. Agents that learn by instruction should
be equipped with this same ability. Hixon et al.
(2015) showed that deploying a mixed initiative
strategy doubled the knowledge acquisition rate.
When knowledge about the current task is missing,
it may be acquired by asking the human, under the
condition that the agent can correctly assess what
knowledge is missing, and that it can formulate a
“descriptive question” accordingly. Both of these
conditions are interesting unsolved challenges.

4.4 Modifications over Time
Learning agents require the ability to update their
knowledge over time because (1) they may acquire
incorrect knowledge, (2) changes in the world may



require corresponding changes in the agent, and (3)
users might change their mind over time about how
the agent should behave. In order for these updates
or corrections to occur, the agent should first be
able to self-inspect and explain its current world
knowledge and taught procedures, so the user can
detect what must be changed. This is challenging
because it can require new capabilities to allow the
user to edit earlier taught procedures with the same
flexibility one would use if teaching a human. For
example, if the user states “I said to send email
when telling my mother something, but you should
use text messaging to tell my brother.”, the agent
may have to inspect and refine multiple procedures,
and store this advice in a way that will become a
default during future instruction.

4.5 Combining Showing and Telling

Humans rely on a combination of demonstration
and conversation to teach one another. Allen et al.
(2007)’s PLOW system, as well as systems such
as (Li et al., 2017, 2018a, 2019), explored many dif-
ferent aspects of how demonstrations can be used
in conjunction with natural language instructions in
multi-modal interfaces to support a more flexible,
expressive, robust, and generalized task learning
process.

One lesson learned is that the existing app GUIs
can be great resources for task instruction. They
encapsulate rich knowledge about the flows of the
underlying tasks and the properties and relations
of relevant entities in a structured way. Users tend
to be familiar with app GUI’s, making them ideal
mediums that users can refer to during instruction.
According to (Li et al., 2019), a major challenge
in natural language instruction is that users do not
know what concepts or knowledge the agent al-
ready knows so that they can use it in their instruc-
tions. Therefore, they often introduce additional
unknown concepts that are either unnecessary or
entirely beyond the capability of the agent (e.g.,
explaining “hot” as “when I’m sweating” when
teaching the agent to “open the window when it is
hot”). By using the app GUIs as a medium, one
can effectively constrain the users to refer to things
that can be found out from some app GUIs (e.g.,
“hot” can mean “the temperature is high”), which
mostly overlaps with the “capability ceiling” of a
smartphone-based agent, and allow the users to de-
fine unknown concepts by referring to app GUIs (Li
et al., 2017, 2019).

An interesting future direction is to better extract
semantics from app GUIs so that the user can focus
on high-level task specifications and personal pref-
erences without dealing with low-level mundane
details (e.g., “buy 2 burgers” means setting the
value of the textbox below the text “quantity” and
next to the text “Burger” to be “2”). Some works
have made early progress in this domain (Liu et al.,
2018c; Deka et al., 2016) thanks to the availability
of large datasets of GUIs (e.g., (Deka et al., 2017)).
Recent reinforcement learning-based approaches
and semantic parsing techniques have also shown
promising results in learning to navigate through
GUIs for user-specified task objectives (Liu et al.,
2018b; Pasupat et al., 2018). For interactive task
learning, an interesting future challenge is how to
combine these user-independent domain-agnostic
machine-learned models with the user’s personal-
ized instructions for a specific task. This will likely
require a new approach of mixed-initiative instruc-
tion (Horvitz, 1999) where the agent can be more
proactive in guiding the user and take more ini-
tiative in the dialog. This could be supported by
improved background knowledge and task mod-
els, and a more flexible dialog framework that can
handle the continuous refinement and uncertainty
inherent to natural language interaction, as well as
the variation in user goals likely to occur as a result
of the agents involvement.

5 Conclusions

Conversational learning – machine learning
through interactive dialog and demonstration with
human instructors – holds the potential to change
fundamentally the relationship between computer
users and their computers. Whereas today most
computer users have no way to program their ma-
chines, if successful this line of research could give
every user the ability to program without learn-
ing a programming language, as the computer in-
stead learns the natural instructional language of
the user. While the advent of usable speech inter-
faces over the past decade has led users to become
comfortable conversing with their computers, the
conversations we have to date remain primitive.
Our research challenge is to build conversational
systems that support the richness of communica-
tion that conversation provides between humans.
Learning from conversational instruction may be
one of the most important steps toward addressing
this challenge.
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